Bootstrapping Machine Learning

Louis Dorard (@louisdorard)

TRUST ME I'M A

DOCTOR

LOUIS RICHARD MICHEL DORARD

having satisfactorily completed the approved course of study and the prescribed assessment has this day been awarded the degree of

Doctor of Philosophy

Date of award: 28 April 2012

That wowen.

Professor Malcolm Grant President and Provost University College London

LOUIS RICHARD MICHEL DORARD

having satisfactorily completed the approved course of study and the prescribed assessment has this day been awarded the degree of

Doctor of Philosophy

Date of award: 28 April 2012

Malwowan.

Professor Malcolm Grant President and Provost University College London

"Predictive is the 'killer app' for big data."

-Waqar Hasan, Apigee Insights

"Predictive apps are the next big thing in app development."

-Mike Gualtieri, Principal Analyst at Forrester

Machine Learning

Data

"A significant constraint on realizing value from big data will be a shortage of talent, particularly of people with deep expertise in statistics and machine learning."

-McKinsey & Co.

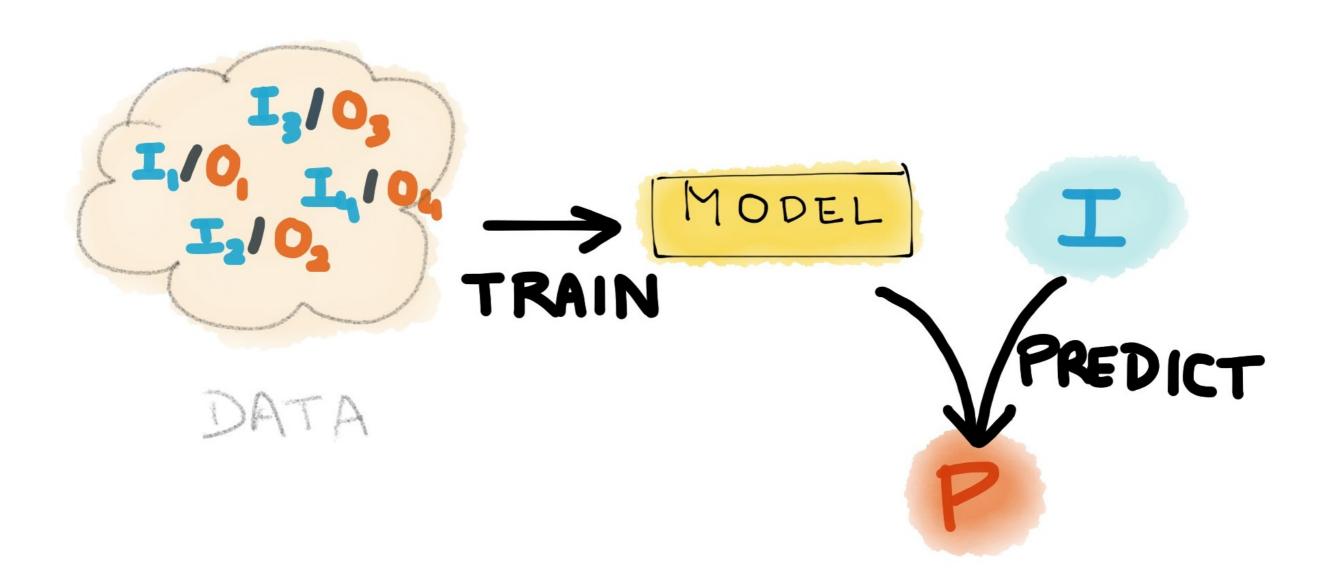
What the @#?~% is ML?

"How much is this house worth? — X \$"

-> Regression

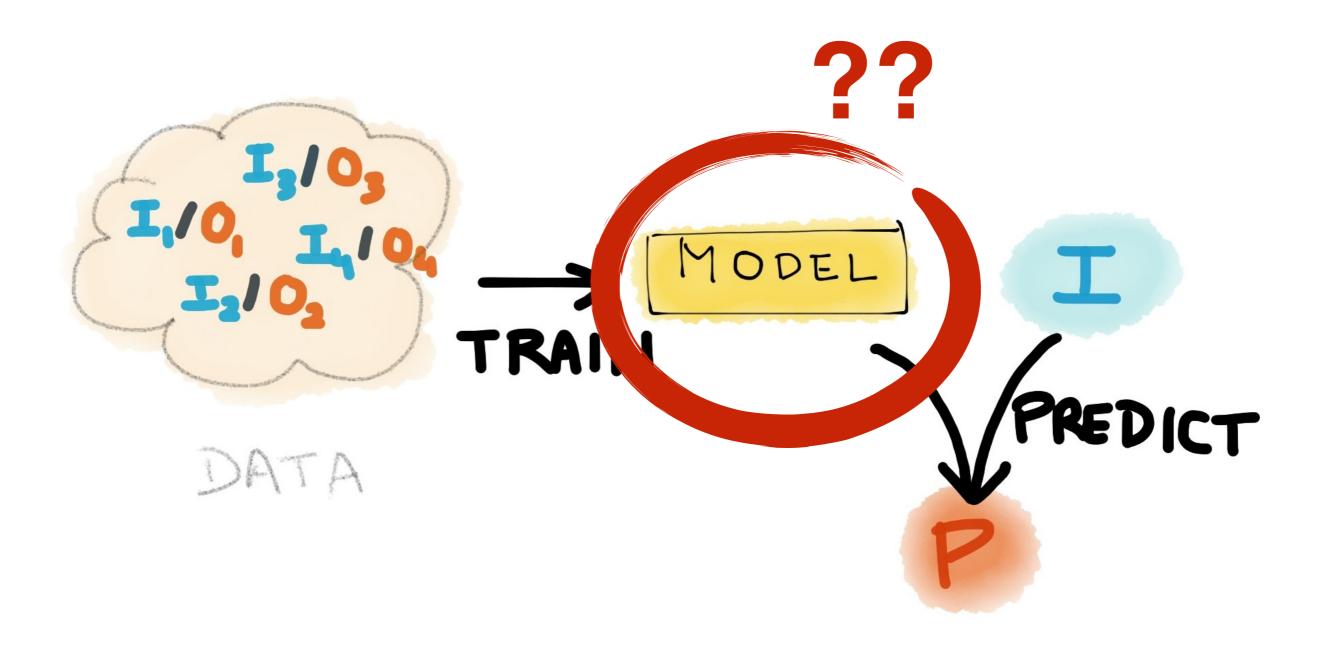
Bedrooms	Bathrooms	Surface (foot²)	Year built	Туре	Price (\$)
3	1	860	1950	house	565,000
3	1	1012	1951	house	
2	1.5	968	1976	townhouse	447,000
4		1315	1950	house	648,000
3	2	1599	1964	house	
3	2	987	1951	townhouse	790,000
1	1	530	2007	condo	122,000
4	2	1574	1964	house	835,000
4			2001	house	855,000
3	2.5	1472	2005	house	
4	3.5	1714	2005	townhouse	
2	2	1113	1999	condo	
1		769	1999	condo	315,000

Bedrooms	Bathrooms	Surface (foot²)	Year built	Туре	Price (\$)
3	1	860	1950	house	565,000
3	1	1012	1951	house	
2	1.5	968	1976	townhouse	447,000
4		1315	1950	house	648,000
3	2	1599	1964	house	
3	2	987	1951	townhouse	790,000
1	1	530	2007	condo	122,000
4	2	1574	1964	house	835,000
4			2001	house	855,000
3	2.5	1472	2005	house	
4	3.5	1714	2005	townhouse	
2	2	1113	1999	condo	
1		769	1999	condo	315,000



Bedrooms	Bathrooms	Surface (foot²)	Year built	Туре	Price (\$)
3	1	860	1950	house	565,000
3	1	1012	1951	house	
2	1.5	968	1976	townhouse	447,000
4		1315	1950	house	648,000
3	2	1599	1964	house	
3	2	987	1951	townhouse	790,000
1	1	530	2007	condo	122,000
4	2	1574	1964	house	835,000
4			2001	house	855,000
3	2.5	1472	2005	house	
4	3.5	1714	2005	townhouse	
2	2	1113	1999	condo	
1		769	1999	condo	315,000

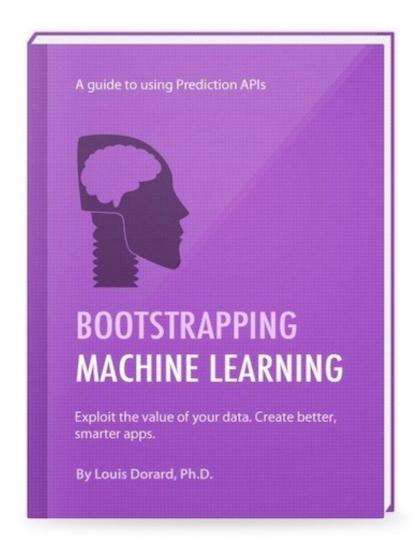
ML is a set of AI techniques where "intelligence" is built by referring to examples



Prediction APIs to the rescue

MAKE YOUR APPS AND YOUR BUSINESS SMARTER

Learn how to use Prediction APIs and make Machine Learning work for you — without hiring an expert.



Are you still wondering what Big Data and Machine Learning can do for you? Feels out of your reach? Don't know how to get started?

In an age of overflowing data, Machine Learning and Data Science seem to be all the rage. By analyzing data, computers are able to "learn" and generalize from examples of things happening in the real world, in the same way a human would do. They can make predictions and answer questions such as "how much?" and "which?". Using these machine-powered predictions makes us create smarter apps.

Prediction APIs are making Machine Learning accessible to everyone and this book is the first that teaches how to use them. You will learn the possibilities offered by these APIs, how to formulate your own Machine Learning problem, and what are the key concepts to grasp — not how algorithms work, so it doesn't take a university degree to understand.

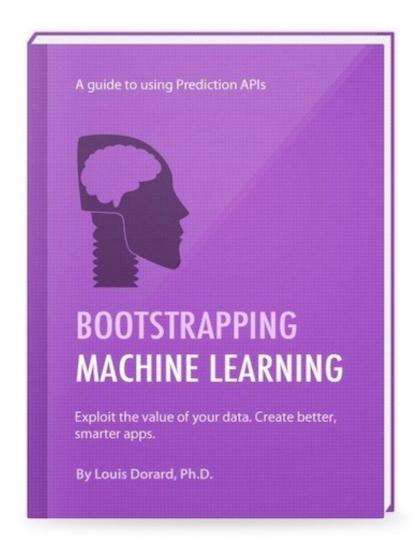
HTML / CSS / JavaScript

HTML / CSS / JavaScript

squarespace.com

MAKE YOUR APPS AND YOUR BUSINESS SMARTER

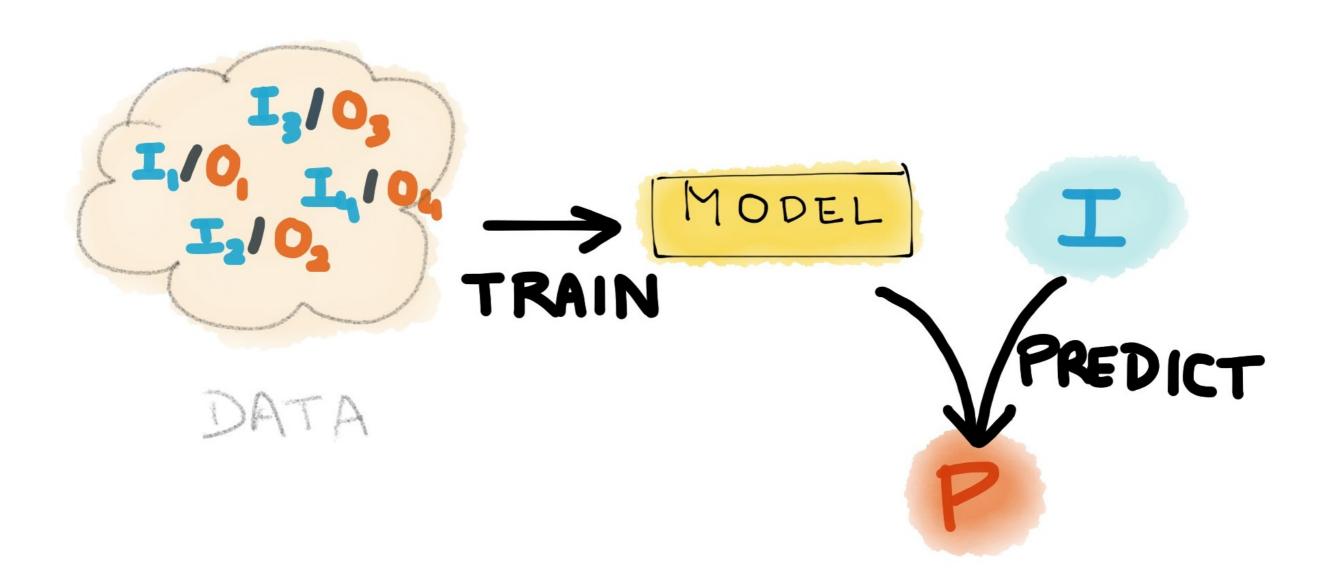
Learn how to use Prediction APIs and make Machine Learning work for you — without hiring an expert.



Are you still wondering what Big Data and Machine Learning can do for you? Feels out of your reach? Don't know how to get started?

In an age of overflowing data, Machine Learning and Data Science seem to be all the rage. By analyzing data, computers are able to "learn" and generalize from examples of things happening in the real world, in the same way a human would do. They can make predictions and answer questions such as "how much?" and "which?". Using these machine-powered predictions makes us create smarter apps.

Prediction APIs are making Machine Learning accessible to everyone and this book is the first that teaches how to use them. You will learn the possibilities offered by these APIs, how to formulate your own Machine Learning problem, and what are the key concepts to grasp — not how algorithms work, so it doesn't take a university degree to understand.



The two phases of machine learning:

- TRAIN a model
- PREDICT with a model

The two methods of prediction APIs:

- TRAIN a model
- PREDICT with a model

The two methods of prediction APIs:

- model = create_model(dataset)
- predicted_output =
 create_prediction(model, new_input)

```
from bigml.api import BigML
# create a model
api = BigML()
source =
api.create_source('training data.csv')
dataset = api.create dataset(source)
model = api.create model(dataset)
# make a prediction
prediction =
api.create prediction (model, new input)
print "Predicted output value:
", prediction['object']['output']
```

Machine Learning for Al

Automated Prediction APIs:

- BigML.com
- Google Prediction API
- WolframCloud.com

Good Data

- List assumptions (e.g. big houses are expensive)
- Browse data
- Plot data (with BigML for instance)

bit.ly/5minPandas

Model building

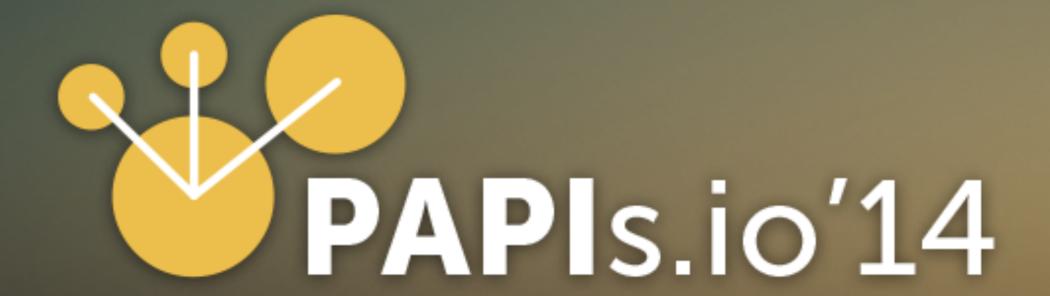
bit.ly/5minML

Evaluation:

- Train/test split
- Predictions accuracy
- Impact on app / UX /business
- Cross validation
- Time taken: training and predictions

Recap

- Classification and regression
- 2 phases in ML: train and predict
- Prediction APIs make it easy to build models, but need to work on data
- Evaluation: split data, measure accuracy, time, impact
- Limitations: # data points, # features and noise



The 1st International Conference on Predictive APIs and Apps

November 17th - 18th, 2014 🌣 Barcelona, Spain

CALL FOR PROPOSALS

REGISTER

VENUE

www.louisdorard.com

@louisdorard